

誘電体バリア放電による 燃焼反応制御

プラズマ応用工学研究室 財満和典

概要

- 研究背景
- 研究目的
- 実験装置 (誘電体バリア放電支援予混合ガスバーナー)
- 実験結果
 - 放電周期に対して長い時間での観測
 - 火炎の形状変化
 - 火炎の反応領域の温度評価
 - 発光スペクトル測定
 - 放電中の電子の状態と燃焼反応速度の関係
 - 放電周期で時分解して観測
 - 火炎の発光・形状変化
 - 火炎中のOHラジカル密度測定(時分解ラジカル発光強度との比較)
- まとめ

研究背景

環境問題・エネルギー問題への科学的・社会的注目

熱平衡の制約の範囲では燃焼技術の革新は難しい

目的

ガス温度を維持し、高エネルギー電子を導入 → 非平衡燃焼反応 → 反応活性化

反応系への電子衝突プロセスの導入

活性酸素の種類と酸化ポテンシャル

O₂

Oxidation

potential

[V]

2.81

2.42

2.07

1.78

1.70

1.23

$\begin{array}{ll} CH_4 + e CH_3 + H + e & (9 \ eV) \\ CH_4 + e CH_2 + 2H + e & (12 \ eV) \end{array} $ [1]	Oxidants
$H_2O + e \rightarrow OH + H + e (6 eV)$ [2]	ОН
$O_2 + e \rightarrow O(^{3}P) + O(^{3}P) + e$ (6 eV)	ο
$O_2 + e \rightarrow O(^{\circ}P) + O(^{\circ}D) + e (8.4 \text{ eV}) [3]$	O ₃
[1] Nakano, Jpn. J. Appl. Phys. 30, 2908 (1991) [2] Ichikawa, J. Phys. Chem. Ref. Data 34, 1 (2005)	H_2O_2
[3] Krupenie, J. Phys. Chem. Ref. Data 1, 423 (1972)	HO ₂

燃焼反応のレートを向上・制御

予混合火炎に誘電体バリア放電(DBD)を重畳 高エネルギー電子を反応に導入

放電重畳により燃焼反応が変化した際の内部状態の理解

概要

- 研究背景
- 研究目的
- 実験装置 (誘電体バリア放電支援予混合ガスバーナー)

• 実験結果

- 放電周期に対して長い時間での観測
 - 火炎の形状変化
 - 火炎の反応領域の温度評価
 - 発光スペクトル
 - 放電中の電子の状態と燃焼反応速度の関係
- 放電周期で時分解して観測
 - 火炎の発光・形状変化
 - 火炎中のOHラジカル密度測定(時分解ラジカル発光強度との比較)

まとめ

レイリー散乱測定体系

反応帯のガス温度

DBD OFF 1580±50 K DBD ON 1530±50 K

放電の有無にかかわらず 温度はばらつきの範囲内

放電の重畳によるガス温度増加は見られない 燃焼速度増加はガス温度に依らない

Optical emission process	of Ar
$Ar + e \rightarrow Ar^* + e$ ($\epsilon = 12e$	V)
$Ar^* \rightarrow Ar + hv$	
$I_{Ar} = A [Ar^*] \propto [Ar] \underline{n_e k_{ex}}(T)$	e)

Ar発光強度は電子密度, 電子エネルギー分布を反映

Ar発光強度がある値を超えると 発光強度に伴って火炎が収縮

概要

- 研究背景
- 研究目的
- 実験装置 (誘電体バリア放電支援予混合ガスバーナー)

• 実験結果

- 放電周期に対して長い時間での観測
 - 火炎の形状変化
 - 火炎の反応領域の温度評価
 - 発光スペクトル
 - 放電中の電子の状態と燃焼反応速度の関係
- 放電周期で時分解して観測
 - 火炎の発光・形状変化
 - 火炎中のOHラジカル密度測定(時分解ラジカル発光強度との比較)

まとめ

DBD : 25 mm, 1kHz, ±10kV

まとめ

プラズマ支援予混合バーナーを構築

放電の重畳により火炎の形状が変化
⇒ 燃焼速度上昇
レイリー散乱によりガス温度を評価
⇒放電重畳による温度上昇は見られない
放電重畳によりArからの発光を観測
⇒高エネルギー電子供給を確認
Ar発光強度と燃焼速度の相関を評価
⇒高エネルギー電子の量・エネルギー分布により燃焼反応を制御可能

火炎からの発光を時分解

⇒燃焼速度の上昇は定常的でない

⇒高エネルギー電子が供給されたガスが火炎先端に輸送→火炎の形状変化 火炎中のOHラジカルの密度分布を評価

⇒電子プロセスによる直接的な増加は見られない

⇒化学反応の変化による応答としての密度変動

熱平衡下でのメタン燃焼反応

活性酸化種の生成反応 $H + O_2 \leftrightarrow OH + O$ $O + H_2 \leftrightarrow OH + H$ $OH + H_2 \leftrightarrow H_2O + H$ $OH + OH \leftrightarrow O + H_2O$ $H + O_2 + M \rightarrow HO_2 + M$ $H + HO_2 \rightarrow OH + OH$ $HO_2 + HO_2 \rightarrow O_2 + H_2O_2$ $H_2O_2 + M \rightarrow OH + OH + M$

熱平衡状態の燃焼反応系には高エネルギー電子は存在しないため 電子衝突プロセスを考慮した反応は考えられていない。

Lab. of Plasma Applications, Hekkaide Unakajima, 機械学会論文集, 66-647, B (2000), 1853-1858.

目的

予混合火炎に誘電体バリア放電(DBD)を重畳 高エネルギー電子を火炎に供給 電子衝突プロセスにより新規反応経路を発現

機械学会論文集, 66-647, B (2000) , 1853-1858.

⇒ 高エネルギー電子を媒介として燃焼反応を制御

放電重畳により燃焼反応が変化した際の内部状態の微視的理解

実験装置

予混合バーナー火炎に同軸円筒型の誘電体バリア放電を重畳

火炎下部へ放電重畳(1kHz)

火炎下部へ放電重畳(80Hz)

火炎下部へ放電重畳(80Hz)

レイリー散乱断面積

化学種iによるレイリー散乱の断面積 $\sigma_{Ri} = \frac{4\pi^2}{\lambda^4} \left(\frac{n_i - 1}{N_0}\right)^2 \sin^2 \theta$

N₀: ロシュミット数 θ: 散乱角 l: 入射光の波長 n_i: ガス種iの屈折率

屈折率(×10⁻⁴)

空気: 2.92 酸素: 2.73

アルゴン: 2.84

メタン: 4.44

混合ガスの実効屈折率(@590nm)

	予混合ガス	メタン抜き
屈折率 (×10⁻⁴)	2.916	2.825
比屈折率 (対空気)	0.9964	0.9641
(比屈折率) ²	0.9927	0.9294

既燃ガスと未燃ガスによるレイリー散乱断面積の違い

図 1 当量比に対する未燃・既燃ガスの散乱断面積

Estimation of total density distribution of OH

Applying Boltzmann's approximation to ratio of I_F at each pixel

 \rightarrow Spatial distribution of rotational temperature of OH (X (v=0))

The rotational temperature and the LIF image at a rotational state ⇒ Distribution of total density in ground state

Principle of examination of rotational temperature using LIF

LIF intensity I_F is proportional to density of lower state $n_{i''}$.

Slope is a function about temperature T

Estimation of rotational temperature

蛍光強度分布の励起波長依存性

プラズマを重畳しない火炎について,異なる三種類の回転線を励起し レーザー誘起蛍光強度分布を観測

放電重畳によるOHラジカル密度の変化

電流の流れる時刻付近でも それほど顕著な密度の変動はない

OHラジカル密度の振動を観測

・OHラジカル密度が減少する位相も観測

・ノズルからの高さによって傾向に違い

以前の結果: 放電の影響により燃焼反応場が活性化

放電を起点とした化学反応の変化 →応答としてのOHラジカル密度の変

動

放電重畳によるOHラジカル密度の変化

電流の流れる時刻付近でも それほど顕著な密度の変動はない

周期的なOHラジカル密度の振動を観測

・OHラジカル密度の振動はノズルからの 高さによって位相が異なっている傾向

・放電非重畳時よりも低いOHラジカル 密度を観測する位相も存在

以前の結果: 放電の影響により燃焼反応場が活性化

放電を起点とした化学反応の変化 →OHラジカル密度の変動

Simulated absorption spectra

Saturation of absorption

We took LIF by single pump laser shot, and plotted incident laser power (PIN photodiode signal) vs LIF intensity. Lines in fellow figures are proportional curve.

火炎の形状変化

火炎の形状の定量的評価 OHラジカル径方向発光強度分布の推定

ピーク半値の内側径を火炎内径として定義

Height = 50 mm 1kHz ±10kV 12

ά

Radial distribution of emission intensity of OH

放電重畳による影響 燃焼パフォーマンスと電子の状態との関係

火炎位置はAr発光強度の増加に伴い中心方向へ移行(燃焼速度が上昇)

⇒高エネルギー電子を媒介とした燃焼化学反応の活性化の示唆

放電の重畳によるガス温度増加は見られない

- : Burned-gas region
- : Reaction zone
- : Unburned-gas region
- → : Gas flow speed